Sparse nonnegative deconvolution for compressive calcium imaging: algorithms and phase transitions

نویسندگان

  • Eftychios A. Pnevmatikakis
  • Liam Paninski
چکیده

We propose a compressed sensing (CS) calcium imaging framework for monitoring large neuronal populations, where we image randomized projections of the spatial calcium concentration at each timestep, instead of measuring the concentration at individual locations. We develop scalable nonnegative deconvolution methods for extracting the neuronal spike time series from such observations. We also address the problem of demixing the spatial locations of the neurons using rank-penalized matrix factorization methods. By exploiting the sparsity of neural spiking we demonstrate that the number of measurements needed per timestep is significantly smaller than the total number of neurons, a result that can potentially enable imaging of larger populations at considerably faster rates compared to traditional raster-scanning techniques. Unlike traditional CS setups, our problem involves a block-diagonal sensing matrix and a non-orthogonal sparse basis that spans multiple timesteps. We provide tight approximations to the number of measurements needed for perfect deconvolution for certain classes of spiking processes, and show that this number undergoes a “phase transition,” which we characterize using modern tools relating conic geometry to compressed sensing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Active Set Methods for Online Spike Inference from Calcium Imaging

Fluorescent calcium indicators are a popular means for observing the spiking activity of large neuronal populations. Unfortunately, extracting the spike train of each neuron from raw fluorescence calcium imaging data is a nontrivial problem. We present a fast online active set method to solve this sparse nonnegative deconvolution problem. Importantly, the algorithm progresses through each time ...

متن کامل

Fast Reconstruction of SAR Images with Phase Error Using Sparse Representation

In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...

متن کامل

Innovative Methodology Fast Nonnegative Deconvolution for Spike Train Inference From Population Calcium Imaging

Vogelstein JT, Packer AM, Machado TA, Sippy T, Babadi B, Yuste R, Paninski L. Fast nonnegative deconvolution for spike train inference from population calcium imaging. J Neurophysiol 104: 3691–3704, 2010. First published June 16, 2010; doi:10.1152/jn.01073.2009. Fluorescent calcium indicators are becoming increasingly popular as a means for observing the spiking activity of large neuronal popul...

متن کامل

Linear Program Relaxation of Sparse Nonnegative Recovery in Compressive Sensing Microarrays

Compressive sensing microarrays (CSM) are DNA-based sensors that operate using group testing and compressive sensing principles. Mathematically, one can cast the CSM as sparse nonnegative recovery (SNR) which is to find the sparsest solutions subjected to an underdetermined system of linear equations and nonnegative restriction. In this paper, we discuss the l₁ relaxation of the SNR. By definin...

متن کامل

Remote Sensing Methods by Compressive Sensing

Compressive Sensing is a recently developed technique that exploits the sparsity of naturally occurring signals and images to solve inverse problems when the number of samples is less than the size of the original signal. We apply this technique to solve underdetermined inverse problems that commonly occur in remote sensing, including superresolution, image fusion and deconvolution. We use l 1-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013